Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 10(16): e15424, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35980018

RESUMO

Adipose tissue secretes an abundance of lipid and protein mediators, and this secretome is depot-specific, with local and systemic effects on metabolic regulation. Intermuscular adipose tissue (IMAT) accumulates within the skeletal muscle compartment in obesity, and is associated with insulin resistance and metabolic disease. While the human IMAT secretome decreases insulin sensitivity in vitro, its composition is entirely unknown. The current study was conducted to investigate the composition of the human IMAT secretome, compared to that of the subcutaneous (SAT) and visceral adipose tissue (VAT) depots. IMAT, SAT, and VAT explants from individuals with obesity were used to generate conditioned media. Proteomics analysis of conditioned media was performed using multiplex proximity extension assays, and eicosanoid analysis using liquid chromatography-tandem mass spectrometry. Compared to SAT and/or VAT, IMAT secreted significantly more cytokines (IL2, IL5, IL10, IL13, IL27, FGF23, IFNγ and CSF1) and chemokines (MCP1, IL8, CCL11, CCL20, CCL25 and CCL27). Adipokines hepatocyte growth factor and resistin were secreted significantly more by IMAT than SAT or VAT. IMAT secreted significantly more eicosanoids (PGE2, TXB2 , 5-HETE, and 12-HETE) compared to SAT and/or VAT. In the context of obesity, IMAT is a distinct adipose tissue with a highly immunogenic and inflammatory secretome, and given its proximity to skeletal muscle, may be critical to glucose regulation and insulin resistance.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Meios de Cultivo Condicionados , Humanos , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Secretoma
2.
Endocrinology ; 163(11)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36036084

RESUMO

Adipose tissue secretions are depot-specific and vary based on anatomical location. Considerable attention has been focused on visceral (VAT) and subcutaneous (SAT) adipose tissue with regard to metabolic disease, yet our knowledge of the secretome from these depots is incomplete. We conducted a comprehensive analysis of VAT and SAT secretomes in the context of metabolic function. Conditioned media generated using SAT and VAT explants from individuals with obesity were analyzed using proteomics, mass spectrometry, and multiplex assays. Conditioned media were administered in vitro to rat hepatocytes and myotubes to assess the functional impact of adipose tissue signaling on insulin responsiveness. VAT secreted more cytokines (IL-12p70, IL-13, TNF-α, IL-6, and IL-8), adipokines (matrix metalloproteinase-1, PAI-1), and prostanoids (TBX2, PGE2) compared with SAT. Secretome proteomics revealed differences in immune/inflammatory response and extracellular matrix components. In vitro, VAT-conditioned media decreased hepatocyte and myotube insulin sensitivity, hepatocyte glucose handling, and increased basal activation of inflammatory signaling in myotubes compared with SAT. Depot-specific differences in adipose tissue secretome composition alter paracrine and endocrine signaling. The unique secretome of VAT has distinct and negative impact on hepatocyte and muscle insulin action.


Assuntos
Resistência à Insulina , Gordura Intra-Abdominal , Adipocinas/metabolismo , Animais , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Dinoprostona/metabolismo , Glucose/metabolismo , Humanos , Resistência à Insulina/fisiologia , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Interleucina-8 , Gordura Intra-Abdominal/metabolismo , Insulina Isófana Humana , Metaloproteinase 1 da Matriz/metabolismo , Obesidade/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ratos , Secretoma , Gordura Subcutânea/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-35419566

RESUMO

Purpose: To train and test a machine learning model to automatically measure mid-thigh muscle cross-sectional area (CSA) to provide rapid estimation of appendicular lean mass (ALM) and predict knee extensor torque of obese adults. Methods: Obese adults [body mass index (BMI) = 30-40 kg/m2, age = 30-50 years] were enrolled for this study. Participants received full-body dual-energy X-ray absorptiometry (DXA), mid-thigh MRI, and completed knee extensor and flexor torque assessments via isokinetic dynamometer. Manual segmentation of mid-thigh CSA was completed for all MRI scans. A convolutional neural network (CNN) was created based on the manual segmentation to develop automated quantification of mid-thigh CSA. Relationships were established between the automated CNN values to the manual CSA segmentation, ALM via DXA, knee extensor, and flexor torque. Results: A total of 47 obese patients were enrolled in this study. Agreement between the CNN-automated measures and manual segmentation of mid-thigh CSA was high (>0.90). Automated measures of mid-thigh CSA were strongly related to the leg lean mass (r = 0.86, p < 0.001) and ALM (r = 0.87, p < 0.001). Additionally, mid-thigh CSA was strongly related to knee extensor strength (r = 0.76, p < 0.001) and moderately related to knee flexor strength (r = 0.48, p = 0.002). Conclusion: CNN-measured mid-thigh CSA was accurate compared to the manual segmented values from the mid-thigh. These values were strongly predictive of clinical measures of ALM and knee extensor torque. Mid-thigh MRI may be utilized to accurately estimate clinical measures of lean mass and function in obese adults.

4.
Obesity (Silver Spring) ; 29(3): 550-561, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33624435

RESUMO

OBJECTIVE: Sex differences in insulin sensitivity are present throughout the life-span, with men having a higher prevalence of insulin resistance and diabetes compared with women. Differences in lean mass, fat mass, and fat distribution-particularly ectopic fat-have all been postulated to contribute to the sexual dimorphism in diabetes risk. Emerging data suggest ectopic lipid composition and subcellular localization are most relevant; however, it is not known whether they explain sex differences in obesity-induced insulin resistance. METHODS: To address this gap, this study evaluated insulin sensitivity and subcellular localization of intramuscular triacylglycerol, diacylglycerol, and sphingolipids as well as muscle acylcarnitines and serum lipidomics in people with obesity. RESULTS: Insulin sensitivity was significantly lower in men (P < 0.05); however, no sex differences were found in localization of intramuscular triacylglycerol, diacylglycerol, or sphingolipids in skeletal muscle. In contrast, men had higher total muscle acylcarnitine (P < 0.05) and long-chain muscle acylcarnitine (P < 0.05), which were related to lower insulin sensitivity (r = -0.42, P < 0.05). Men also displayed higher serum ceramide (P = 0.05) and lysophosphatidylcholine (P < 0.01). CONCLUSIONS: These data reveal novel sex-specific associations between lipid species involved in the coupling of mitochondrial fatty acid transport, ß-oxidation, and tricarboxylic acid cycle flux that may provide therapeutic targets to improve insulin sensitivity.


Assuntos
Carnitina/análogos & derivados , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Adulto , Carnitina/análise , Carnitina/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Estudos de Coortes , Feminino , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Metabolismo dos Lipídeos/fisiologia , Masculino , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/química , Músculo Esquelético/ultraestrutura , Obesidade/etiologia , Obesidade/metabolismo , Oxirredução , Caracteres Sexuais , Esfingolipídeos/metabolismo , Frações Subcelulares/química , Frações Subcelulares/metabolismo
5.
Diabetologia ; 64(1): 168-180, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33128577

RESUMO

AIMS/HYPOTHESIS: Subcellular localisation is an important factor in the known impact of bioactive lipids, such as diacylglycerol and sphingolipids, on insulin sensitivity in skeletal muscle; yet, the role of localised intramuscular triacylglycerol (IMTG) is yet to be described. Excess accumulation of IMTG in skeletal muscle is associated with insulin resistance, and we hypothesised that differences in subcellular localisation and composition of IMTG would relate to metabolic health status in humans. METHODS: We evaluated subcellular localisation of IMTG in lean participants, endurance-trained athletes, individuals with obesity and individuals with type 2 diabetes using LC-MS/MS of fractionated muscle biopsies and insulin clamps. RESULTS: Insulin sensitivity was significantly different between each group (athletes>lean>obese>type 2 diabetes; p < 0.001). Sarcolemmal IMTG was significantly greater in individuals with obesity and type 2 diabetes compared with lean control participants and athletes, but individuals with type 2 diabetes were the only group with significantly increased saturated IMTG. Sarcolemmal IMTG was inversely related to insulin sensitivity. Nuclear IMTG was significantly greater in individuals with type 2 diabetes compared with lean control participants and athletes, and total and saturated IMTG localised in the nucleus had a significant inverse relationship with insulin sensitivity. Total cytosolic IMTG was not different between groups, but saturated cytosolic IMTG species were significantly increased in individuals with type 2 diabetes compared with all other groups. There were no significant differences between groups for IMTG concentration in the mitochondria/endoplasmic reticulum. CONCLUSIONS/INTERPRETATION: These data reveal previously unknown differences in subcellular IMTG localisation based on metabolic health status and indicate the influence of sarcolemmal and nuclear IMTG on insulin sensitivity. Additionally, these studies suggest saturated IMTG may be uniquely deleterious for muscle insulin sensitivity. Graphical abstract.


Assuntos
Resistência à Insulina/fisiologia , Músculo Esquelético/química , Músculo Esquelético/ultraestrutura , Triglicerídeos/análise , Triglicerídeos/química , Adulto , Atletas , Núcleo Celular/química , Citosol/química , Diabetes Mellitus Tipo 2/metabolismo , Gorduras na Dieta/administração & dosagem , Diglicerídeos/análise , Retículo Endoplasmático/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/química , Obesidade/metabolismo , Resistência Física , Sarcolema/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...